
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Application of Set Theory and Boolean Algebra on
Inkscape’s Boolean Operations

Puti Nabilla Aidira - 13521088

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1author@itb.ac.id

Abstract—Inkscape is a free and open-source vector graphics
editor software. It is commonly used for artistic and technical
illustrations such as cartoons, clip art, logos, typography, etc. One
of its powerful features is Boolean Operations which can be used to
form a specific desired shape from some basic shapes. The
implementation of these Boolean Operations involves the
application of Set Theory and Boolean Algebra. This paper will
discuss how Set Theory and Boolean Algebra help in the
implementation of Inkscape’s Boolean Operations. We will also
take a look into the real code implementation taken from
Inkscape’s official repository and how it is related to Set Theory
and Boolean Algebra.

Keywords—Boolean Algebra, Boolean Operations, Inkscape, Set

Theory, Vector Graphics.

I. INTRODUCTION
Set theory is a branch of discrete mathematics that studies

sets. Informally, a set is described as a collection of different
objects called elements or members. Historically, set theory was
founded in 1874 by Georg Cantor with his paper titled "On a
Property of the Collection of All Real Algebraic Numbers". As
of now, set theory is known as the foundation of mathematics in
which all mathematical concepts are defined in terms of the
primitive notions of set and membership [1].

Boolean algebra is a branch of algebra that has truth values as
variables and logical operators as operators. Boolean algebra
was first introduced in 1854 by George Boole in his book: “The
Laws of Thought”. Sets algebra, which is a set of sets closed
under the set-theoretic operations is a form of Boolean algebra.
That is, they have analogous basic symbols and laws.

Inkscape is a free and open-source vector graphics editor
software that runs on GNU/Linux, Windows, and macOS. It is
commonly used for artistic and technical illustrations including
cartoons, clip art, logos, typography, diagramming, and
flowcharting [2]. Inkscape’s main format is the standardized
SVG file format. One of Inkscape’s features is Boolean
Operations which works on paths. Boolean Operations available
are Union, Difference, Intersection, Exclusion, Division, Cut
Path, Combine, and Break Apart. These operations are widely
used to form a specific desired shape from any basic shapes.

II. THEORETICAL BASIS

A. Set Theory
1. Definition and Formal Notation

A set is a collection of different objects called
elements or members. Set-builder notation for a set that
is defined by a predicate looks like one of the following:

{"|Φ(")}
{" ∶ 	Φ(")}

{"|"	 ∈ +	,-.	Φ(")}
{"|"	 ∈ +	 ⋀Φ(")}

{"	 ∈ +|	Φ!("), Φ"(")}
(1)

With Φ(") is said to be the rule or predicate in
which if holds then x belongs to the set.

Table i. Formal Symbols in Sets

Symbol Description
P or Z+ Set of positive integers =

{1, 2, 3, …}
N Set of natural numbers =

{1, 2, 3, …}
Z Set of integers =

{…,-2, -1, 0, 1, 2, 3, …}
Q Set of rational numbers =

{a/b | a, b ∈ Z and b ≠ 0 }
R Set of real numbers.
R+ Set of positive real

numbers.
C Set of complex number =

{a + bi | a, b ∈ R}
U Universal
Ø or { } Empty set

2. Venn Diagram

The Venn diagram is an informal set representation
that uses overlapping circles (or other shapes) to illustrate
the logical relationships between them [3]. It is first used
by John Venn in an 1880 paper entitled “On the
Diagrammatic and Mechanical Representation of

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Propositions and Reasonings”. The Venn diagram is
illustrated in [4, Fig. 1].

Figure 1. Venn Diagram Example

3. Intersection

The intersection is a binary set operator whereas the
result set only contains elements that belong to both of
the operand sets, as formally defined by (2). It is
illustrated in [4, Fig. 2].

A Ç B = { x | x Î A and x Î B } (2)

Figure 2. Intersection Illustrated in

Venn Diagram

4. Union

The union is a binary set operator whereas the result
set contains all elements that belong to either operand set,
as formally defined by (3). It is illustrated in [4, Fig. 3].

A È B = { x | x Î A or x Î B }

(3)

Figure 3. Union Illustrated in

Venn Diagram

5. Complement

The complement is a unary set operator whereas the
result set contains all elements in the universe that do not
belong to the operand set, as formally defined by (4). It
is illustrated in [4, Fig. 4].

1̅ = { x | x Î U, x Ï A }

(4)

Figure 4. Complement Illustrated in

Venn Diagram

6. Difference
The difference is a binary set operator whereas the

result set contains all elements that belong to the first
operand set but do not belong to the second operand set,
as formally defined by (5). It is illustrated in [4, Fig. 5].

A – B = { x | x Î A and x Ï B } = A Ç 34

(5)

Figure 5. Difference Illustrated in

Venn Diagram

7. Symmetric Difference

The symmetric difference is a binary set operator
whereas the result set contains all elements that do not
belong to the intersection of the operand sets, as formally
defined by (6). It is illustrated in [4, Fig. 6].

A Å B = (A È B) – (A Ç B)

= (A – B) È (B – A)
(6)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Figure 6. Symmetric Difference Illustrated in

Venn Diagram

8. Inclusion-Exclusion Principle
The Inclusion-Exclusion Principle describes the

cardinality, the number of different elements in a set, of
a union set, as in (7).

½A È B½ = ½A½ + ½B½ – ½A Ç B½

(7)
With, |A| defined the cardinality of set A.

B. Boolean Algebra
1. Definition

Boolean Algebra is a mathematical structure formed
by basic logical laws and properties described by George
Boole in his book “The Laws of Thought” [4]. The
formal definition of Boolean Algebra is for B, a set
defined by two binary operators, + and ×, and a unary
operator ‘. Let 0 and 1 be two elements different from B.
Then, the tuple (8) called Boolean Algebra if for a, b, c
Î B applies axioms (9).

< B, +, × ,‘, 0, 1 >
(8)

1. Identity:
(i) a + 0 = a
(ii) a × 1 = a

2. Commutative:

(i) a + b = b + a
(ii) a × b = b . a

3. Distributive:

(i) a × (b + c) = (a × b) + (a × c)
(ii) a + (b × c) = (a + b) × (a + c)

4. Complement

For every a Î B there exist a unique element a‘Î
B such that:

 (i) a + a’ = 1
(ii) a × a’ = 0

(9)

2. Operators
Boolean Algebra operators include +, × , ‘, and the

derivated, derivation as in (10), XOR (⊕)	operators.	
The	truth	table	of	these	operators	is	shown	in	Table.	
ii.		

	
	
	
	

Table ii. Truth Table of Boolean Algebra
Operations

a b a + b a × b a ⊕ b
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

	
, ⊕ 6 = (, +6) × (, ′ +6 ′)

(10)

3. Sets Algebra as Boolean Algebra
Set algebra is defined as a set of sets closed under the

set-theoretic operation. Set algebra is a form of Boolean
Algebra as they have analogous operators, laws, and
properties. The analogous operators showed in Table. iii.
Set algebra tuple showed in (11).

Table iii. Analogous Operators between Boolean

Algebra and Sets Algebra
Boolean Algebra Sets Algebra

1 U
0 Ø

p × q A ∩ B
p + q A ∪ B

p’ 9̅

< 	3, ∩, ∪	, −, Ø, U	 >
(11)

C. Vector Graphics
Vector graphics is a form of computer graphics that uses

vector data models. Vector data models is a data models that
use points and their associated (x, y) coordinate pairs to
represent the vertices of spatial features. In contrast with the
raster data models, in which spatial information is quantized
into discrete grid cells, vector data models have their spatial
information linked via a simple identification number given
to each feature in a map [5]. The comparison between raster
and vector graphics is shown in [6, Fig. 7].

The fundamental elements of vector graphics are point,
line, and polygon, as in [5, Fig. 8]. Points are zero-
dimensional objects containing only a single coordinate pair.
Lines are one-dimensional features composed of multiple,
explicitly connected points. Linea is also often referred to as
paths. Polygons are two-dimensional features created by
multiple lines that loop back to create a closed feature [5].
Other more complex elements of vector graphics also
include circular arcs, cubic spines, Bézier curves, circles,
ellipses, spheres, polygon mesh, fractals, etc.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Vector graphics can be edited with a vector graphic
editor. Modifications provided by vector graphic editors
typically allow translation, rotation, mirroring, stretching,
skewing, affine transformations, as well as changing of z-
order [7]. Other than that, boolean/set operations such as
union, intersection, difference, etc. are also commonly
provided in vector graphic editors software [8].

The World Wide Web Consortium (W3C) standard for
vector graphics is Scalable Vector Graphics (SVG).
Meanwhile, other file formats such as WMF, EPS, PDF,
CDF, and AI, are also commonly used to represent vector
graphics.

Figure 7. Vector Graphic and Raster Graphic

Comparison

Figure 8. Points, Lines, and Polygons as Vector

Graphics Fundamental Elements

III. INKSCAPE’S BOOLEAN OPERATIONS

IMPLEMENTATION
Inkscape is a free and open-source vector graphics editor

software that runs on GNU/Linux, Windows, and macOS.
Inkscape is widely used for artistic and technical illustrations
including cartoons, clip art, logos, typography, diagramming,
and flowcharting [2]. One of its features is Boolean Operations
which are operations between two or more paths (or objects that
are automatically converted into paths) [9]. These Boolean
Operations include Union, Difference, Intersections,
Exclusions, Division, Cut Path, Combine, and Break Apart. For
the sake of simplicity and to preserve relevancy with the topic,
only Union, Difference, Intersections, and Exclusion will be
discussed.

A. Union
Union Operation is an operation between two paths that keep

the common outline the common outline of all selected paths
[9]. The illustration of how the operation works is shown in Fig.

9. Looking at its definition, it is clear that the Union Operation
uses the same logic as the union in sets algebra. Inkscape
implementation, taken from the official Inkscape repository,
written in C++ is shown in [10, Fig. 10].

Figure 9. Union Operation

PathVector PathIntersectionGraph::getUnion()
{
PathVector result = _getResult(false,
 false);
_handleNonintersectingPaths(result, 0,
 false);

 _handleNonintersectingPaths(result, 1,
 false);
return result;

}
Figure 10. Code Snippet of Inkscape’s Union Operation

Implementation

The code uses the _getResult function that takes two boolean
arguments. The _getResult function is mainly a function to
determine which ‘direction’ to go. The first argument is for the
first path operand, supposedly called A. If the first argument’s
value is ‘false’ then it is supposed to ‘go outside’ in path A.
Otherwise, if the first argument’s value is ‘true’ then it is
supposed to ‘go inside’ in path A. Similarly, the second
argument applies the same rules for the second path operand,
supposedly called B. To make it clear, the term ‘direction’, ‘go
inside’, and ‘go outside’ are terms used in the source code
comment of this function. The code snippet of how the function
gets implemented fully is shown in [10, Fig. 11]. However, to
preserve relevancy and simplicity, the details of how the
function gets implemented won’t be further discussed. The
_handleNonintersectingPaths function which handles path
operands that do not intersect also won’t be further discussed.

Nonetheless, note that we can define the term ‘go outside’ as
including points from the current path operand that do not
intersect (in terms of area) with the other path operand, or
intuitively means the points that lie outside the intersection area.
In another word, ‘go outside’ in A means including points in A
that does not intersect (in term of area) with B, and vice versa.
On the contrary, we can define the term ‘go inside’ as including
points from the current path operand that exclusively intersect
(in terms of area) with the other path operand, or intuitively
means the points that lie inside the intersection. In another word,
‘go inside’ in A means to only include points in A that intersect
with B, and vice versa.

With this definition in mind, it can be concluded that this

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

implementation of Union Operation means that the resulting
path will contain all of the points from both path operands,
except the points inside the intersection area. It is because points
inside the intersection area will only count once, that is as an
area inside the union path. Which is, reciprocal with the
inclusion-exclusion principle defined in (7).

PathVector PathIntersectionGraph::_getResult(bool enter_a, bool
enter_b){

 PathVector result;
 if (_xs.empty()) return result;
 // reset processed status
 _ulist.clear();
 for (auto & _component : _components) {
 for (auto & li : _component) {
 for (auto & k : li.xlist) {
 _ulist.push_back(k);}}}
 unsigned n_processed = 0;
 while (true) {
 // get unprocessed intersection
 if (_ulist.empty()) break;
 IntersectionVertex &iv = _ulist.front();
 unsigned w = iv.which;
 ILIter i =

 _components[w][iv.pos.path_index].xlist.iterator_to(iv);
 result.push_back(Path(i->p));
 result.back().setStitching(true);
 bool reverse = false;
 while (i->_proc_hook.is_linked()) {
 ILIter prev = i;
 std::size_t pi = i->pos.path_index;
 // determine which direction to go
 // union: always go outside
 // intersection: always go inside
 // a minus b: go inside in b, outside in a
 // b minus a: go inside in a, outside in b
 reverse = false;
 if (w == 0) {
 reverse = (i->next_edge == INSIDE) ^ enter_a;
 } else {
 reverse = (i->next_edge == INSIDE) ^ enter_b;}
 // get next intersection
 if (reverse) {

 i = cyclic_prior(i, _components[w][pi].xlist);
 } else {
 i = cyclic_next(i, _components[w][pi].xlist);}
 // append portion of path
 PathInterval ival = PathInterval::from_direction(
 prev->pos.asPathTime(), i->pos.asPathTime(),
 reverse, _pv[i->which][pi].size());
 _pv[i->which][pi].appendPortionTo(result.back(), ival,
 prev->p, i->p);
 // mark both vertices as processed
 //prev->processed = true;
 //i->processed = true;
 n_processed += 2;
 if (prev->_proc_hook.is_linked()) {
 _ulist.erase(_ulist.iterator_to(*prev));}
 if (i->_proc_hook.is_linked()) {
 _ulist.erase(_ulist.iterator_to(*i));}
 // switch to the other path
 i = _getNeighbor(i);
 w = i->which}
 result.back().close(true);
 if (reverse){
 result.back() = result.back().reversed();
 }
 if (result.back().empty()) {
 // std::cerr << "Path is empty" << std::endl;
 throw GEOM_ERR_INTERSECGRAPH;
 }
 }
 if (n_processed != size() * 2) {
 // std::cerr << "Processed " << n_processed << "
 intersections, expected " << (size() * 2) << std::endl;
 throw GEOM_ERR_INTERSECGRAPH;
 }
 return result;
 }

Figure 11. Code Snippet of Inkscape’s _getResult Function
Implementation

B. Difference
Difference Operation is an operation between two paths that

subtract one path from another one [9]. In the difference
operation, the stacking order should be considered. The rule is
that the bottom path will be subtracted by the top path, and vice
versa. The illustration of how the operation works is shown in
Fig. 12. The Difference Operation is analogous to the difference
operator, A – B and B – A, in sets algebra. Inkscape
implementation of Difference Operation, written in C++, is
shown in [10, Fig. 15].

(a)

(b)

Figure 12. (a) Difference Operation with Square as The

Bottom Path, (b) Difference Operation with Circle as The
Bottom Path

PathVector
PathIntersectionGraph::getAminusB()
{
 PathVector result = _getResult(false,
 true);

 _handleNonintersectingPaths(result, 0,
 false);
_handleNonintersectingPaths(result, 1,
 true);
return result;

}

PathVector
PathIntersectionGraph::getBminusA()
{
PathVector result = _getResult(true,
 false);
_handleNonintersectingPaths(result, 1,
 false);
_handleNonintersectingPaths(result, 0,
 true);
return result;

}
Figure 13. Code Snippet of Inkscape’s Difference Operation

Implementation

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

The implementation divides into two functions, getAminusB
and getBminusA. getAminusB is analogous to A – B in set
algebra, whereas A is the bottom path and B is the top path. It
can be seen that, with the interpretation and definition discussed
in the Union section, getAminusB() will ‘go outside’ in A and
‘go inside’ in B. That is, the resulting path will contain all the
points on path A that lie outside the intersection area and all the
points on path B that lie inside the intersection area. Similarly,
the opposite applies to getBminusA().

C. Intersection
Intersection Operation is an operation between two paths that

only keep those parts covered by all selected paths [9]. The
illustration of how the operation works is shown in Fig. 14. By
its definition, it is clear that Intersection Operation is analogous
to the intersection in sets algebra. Inkscape implementation of
Intersection Operation, written in C++, is shown in [10, Fig. 15].

Figure 14. Intersection Operation

PathVector
PathIntersectionGraph::getIntersection()
{
PathVector result = _getResult(true,
 true);
_handleNonintersectingPaths(result, 0,
 true);

 _handleNonintersectingPaths(result, 1,
 true);
return result;

}
Figure 15. Code Snippet of Inkscape’s Intersection Operation

Implementation

With definitions and interpretations discussed in the Union
section, it can be concluded that getIntersection() will ‘go
inside’ in both A and B. In other words, the resulting path will
include only the points that lie inside the intersection area
between paths A and B.

D. Exclusion
Exclusion Operation is an operation between two paths that

keeps those parts covered by an odd number of paths [9]. In the
case of operation between two paths, the result is where the
paths do not overlap. The illustration of how the operation works
is shown in Fig. 16. From its definition, Exclusion Operation can
be seen as analogous to the symmetric difference in sets algebra.
Inkscape implementation of Intersection Operation, written in
C++, is shown in [10, Fig. 17].

Figure 16. Exclusion Operation

PathVector PathIntersectionGraph::getXOR()
{
PathVector r1, r2;
r1 = getAminusB();
r2 = getBminusA();
std::copy(r2.begin(), r2.end(),
 std::back_inserter(r1));
return r1;

}
Figure 17. Code Snippet of Inkscape’s Exxlusion Operation

Implementation

Although the implementation of copy and back_inserter
functions won’t be further discussed, it can be interpreted that
getXOR() takes two functions: getAminusB and getBminusA,
then sort of ‘add’ them together. It is reciprocal with the
symmetric difference definition in (6), where symmetric
difference can be defined as the union of A – B and B – A.

IV. CONCLUSION

Set theory and set algebra, as a form of Boolean Algebra, is a
fundamental and useful concepts. It is used not only in the field
of Math and Science but also in Art and Creativity. Particularly,
it is used in the implementation of Boolean Operations provided
in Inkscape. Thus, having knowledge of set theory and set
algebra enables us to create complex shapes, as complex as our
imagination can be.

V. ACKNOWLEDGMENT

First and foremost, I would like to thank Allah Swt. as without
his blessing I wouldn’t be able to finish this paper. Second, I
would also like to thank Dr. Nur Ulfa Maulidevi, S.T., M.Sc. as
my Discrete Mathematics lecturer for her lectures that inspire
me to write this paper. Not to forget, I wish to show my
appreciation for Dr. Ir. Rinaldi Munir, MT. as his lectures
material help me to compose this paper. Lastly, I also want to
thank all of my friends and colleagues who always support me.

REFERENCES
[1] Kunen, Kenneth (1980), Set Theory: An Introduction to Independence

Proofs, North-Holland, ISBN 0-444-85401-0.

[2] https://inkscape.org/about/, accessed 10/12/2022.

[3] “What is a Venn Diagram”. Lucidchart,

https://www.lucidchart.com/pages/tutorial/venn-

diagram#:~:text=A%20Venn%20diagram%20uses%20overlapping,item

s%20are%20similar%20and%20different, accessed 10/12/2022.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

[4] Munir, Rinaldi. “Himpunan (Bag.1 – Update 2022”. Program Studi

Teknik Informatika STEI ITB: 2022,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2022-

2023/Himpunan(2022)-1.pdf, accessed 10/12/2022.

[5] “Essentials of Geographic Information Systems v. 1.0”. Saylor

Academy: 2012, https://saylordotorg.github.io/text_essentials-of-

geographic-information-systems/s08-02-vector-data-models.html,

accessed 10/12/2022.

[6] https://blog.fileformat.com/2021/08/25/raster-vs-vector-images-a-brief-

comparison/, accessed 10/12/2022.

[7] Nigel Chapman; Jenny Chapman (2002) [2000]. Digital Multimedia.

Wiley. p. 70. ISBN 0-471-98386-1.

[8] Barr, Alan H. (July 1984). "Global and Local Deformations of Solid

Primitives" (PDF). SIGGRAPH. 18 (3): 21–30. CiteSeerX

10.1.1.67.6046. doi:10.1145/800031.808573. ISBN 0897911385. S2CID

16162806.

[9] https://inkscape-manuals.readthedocs.io/en/latest/boolean-

operations.html , accessed 10/12/2022.

[10] https://inkscape.gitlab.io/inkscape/doxygen/intersection-

graph_8cpp_source.html#l00338, accessed 10/12/2022.

STATEMENT
I hereby declare that the paper I am writing is my own writing,

not an adaptation or translation of someone else's paper, nor
plagiarism.

Bandung, 12 December 2022

Puti Nabilla Aidira 13521088

